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The present work deals with the study a symmetric structure response generating a plasmons polariton of long range using 
a simplified geometrical structure consisting on a gold thin film set between two layers of PMMA. Surface plasmons are 
considered as typical mode of the metal-dielectric interface. This aims an optimization of the parameters affecting the sur-
face plasmons ranges, such as the multilayer structure thickness, incidence angle and the wave length.  
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1. Introduction  
 
Since the discovery of the surface plasmon optical ex-

citation phenomenon by Kretschmann and Otto in 1968, 
the plasmonics technology has been rapidly developed; 
especially the plasmon wave guides under the strip form of 
finite width and nanometeric thickness become a promis-
ing issue for applications dedicated to miniaturized optical 
devices. The configuration allowing surface plasmon gen-
eration of long range seems a breakthrough for litho-
graphic applications of higher resolution.  

The surface plasmons are considered as typical modes 
of an interface metal-dielectric [1]. They are characterized 
by the propagation, localization and resonance, which 
make them suitable for nano-optics applications [2]. 
Among these properties, only the transverse magnetic 
property (TM) can induce a dipolar momentum and hence, 
excite a plasmon-polariton. The TM wave which obeys 
Maxwell equations and satisfies the continuity conditions 
at the interface. It propagates along the dielectric-metal in-
terface and its amplitude decreases exponentially as one 
move away; perpendicularly, from the interface. The me-
diums are supposed isotropic, homogeneous and linear [3]. 
The plasmons range can be greatly increased in a symmet-
rical configuration of a gold layer having a dielectric con-
stant εm set between two PMMA  layers of dielectric con-
stant εd. 

 
 
2. Field equation description 
 
The considered mediums are assumed isotropic, ho-

mogeneous and linear. The plasmon range width can be 
considerably increased in a symmetrical configuration 
such as a gold layer of dielectric constant ε2, inserted be-
tween two PMMA layers of dielectric constant εi   

In this configuration, the expression of the magnetic 
field associated to the plasmon mode is given by.  

 
H=H0 exp[i(ωt-kr x)] f(z)=H y            (1) 

 
 With:   H0 the normalizing constant and f(z) expresses the 
dependence of H as a function of z such that f(z =0)=1  
The z decay is expressed by 
 

f (z) = exp(-ad z) z>0= exp (amz) z<0               (2) 
and 
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ai (i=m, d) are the propagation constants. 
Considering that the system is invariant if translated 

with respect to y and the continuity conditions valid a z=0 
we get: 

0 a (w)   a  dmmd =+ εε                (3) 
 
Condition of Eq.4 can only be satisfied if mediums m 

and d have opposite dielectric constants. 
As εd is positive for a dielectric, the second medium 

must be a metal of dielectric expression given by: 
 

j irm ε+ε=(w)ε  such that  εr  < 0. 
 

The model used to determine the gold dielectric ex-
pression is the Drude [4] model shown in Fig.1. 

Gold dielectric expression is complex and the wave 
vector is also complex as expressed by: 
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After identifying the real and imaginary parts and 
considering that |εr|>>εi and εr<0, we get: 
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Fig. 1. Gold Dielectric constant as given by Drude 
Dots is for imaginary part and line for real part. 

 
 

2.1 Typical Mode of a Simple Interface  
 
Maxwell equations are used to determine the surface 

wave analytical characteristics. Hence it can be shown that 
the surface waves appear in p polarization (they may ap-
pear in s polarization in magnetic materials) and their dis-
persion relation can be computed for a planar interface [5]. 
As has been discussed earlier, surface waves are electro-
magnetic resonance of the planar interface and are evanes-
cent in the direction perpendicular to the planar interface 
where the do propagate. Resonance of a structure can be 
studied using a matrix formalism linking the incoming and 
outgoing waves hence one gets: 
 

dr

dr
pk εε
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For a given impulse, the plasmon wave vector is 

greater than that of a phonon as shown in Fig. 2. Fig. 2 
shows that excitation of a plasmon mode obeys k>kd. This 
property ensures an imaginary kz, i.e., an interface mode 
which, however, does not allow the light excitation.  

The plasmon resonant frequency given by 
 

m
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where m is the electron effective mass, e the electron 
charge and N the metal electron density. 
 
 

 
 

Fig. 2. Dispersion relation for a simple interface mode 
 
 

2.2   Refection Coefficient and Wave length 
 
The interpretation of the experimental results needs 

the reflection coefficient Rp of a dissymmetrical system of 
3 layers (dielectric/metal/dielectric). The field continuity 
conditions at the interface allow the determination of this 
reflection coefficient as: 
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with rpmd   rpmp  the reflection coefficients at the interfaces 
metal/dielectric and metal /prism, respectively, and e is the 
metallic layer thickness as shown in Fig.1. 

If |εr|>>εi, the reflectivity expression is a Lorentzien of 
the form: 
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Equation 8 gives k = km/d + ∆k as the excitation condi-

tion of a plasmons mode and its propagation length is 
given as: 

( )radi

L
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2

1 ps                               (9) 

 
Гi : Plasmon attenuation due to the joule losses and it is 
given by the imaginary part of the wave vector of the 

plasmon )k Im( psi =Γ . 
Гrad: is the energy transfer impedance of the plasmon to 
photon. 
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The propagation length of surface wave is inversely 
proportional to the imaginary part of the wave vector and 
the field expression can be written as [7]: 
 

      x)k exp(- f(z) x)]k-texp[-i( H     ir0 ω=H (10) 
 

Equation 10 characterizes a mode related to the interface 
metal-dielectric and propagating in parallel to the interface 
with a wave vector kr and an attenuation fac-
tor   x)k exp(- i . This allows defining the propagation 
length as: 
 

ips k
2
1 L =                              (11) 

 
For a system Gold/PMMA; at λ=770nm, we observe               

Lps= 27µm. 
 
 

 
 

Fig. 3. Evolution of the reflectivity graph with respect to 
the incidence angle for different layer thicknesses                      

at λ = 600nm, d=60nm,….  d=30nm,...  d=25nm  ¯¯ 
 

 
3.  Brent method 
 
The Brent method is defined as the combination of the 

dichotomy and the inverse quadratic interpolation methods. 
It is an iterative method using the square root setting and 
the inverse quadratic interpolation [8]. 

Assume a couple of points (a,b) and a function f con-
tinuous within the definition interval. If the product f (a)f 
(b) < 0, the intermediate value theorem shows that the 
functions goes to zero at least once in its definition interval. 
This method is however, is lengthy for convergence. Using 
the Brent method, one needs to know the values of the 
function for three values  

 
 
 
 

Assume (a, f(a)), (b, f(b)), and (c, f(c)) the interpreta-
tion expression given by 
 

+
f(b))f(a))(f(c)(f(c)

f(b))cf(a))(y(y=x
−−

−−
 

f(c))f(b))(f(a)(f(a)
f(c))af(b))(y(y+
−−

−−
                     (12) 

                   
f(a))f(c))(f(b)(f(b)

f(a))bf(c)(y(y+
−−

−−
 

 
For pour y= 0 Eq.12 can be written as: 
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Where P and Q are given by: 
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R, S and T are expressed as: 
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In practice, b is the first estimation of the root and P/Q is a 
correction factor. 
 
 

4.  Long-range surface plasmons  
 
The magnetic field expression is given by [9] 

 
yHH == f(z)  x)]k-texp[i( H r0 ω        (16) 

 
 with H0 is the normalizing constant, and f (z) expresses 
the dependency of H in terms of z such that f(z =0)=1. 
 
The decrease with respect to z is given by: 
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d is the gold layer thickness with aj (j=d1, d3, m) are the 
propagation constants with respect to z within the different 
mediums. 
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Solving Maxwell equations with the continuity applied for 
each surface, we get  
tanh (a2 d) =  ε2 a2 ( ε1a3 + ε1a3 )  (a2

2 ε1 a3 + a1ε2
2 a3 )  (18) 
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For a symmetrical system d1 = d3, Eq.18 splits into two 
parts where one is antisymetric given by: 
 

                                     a  / -  d/2   tanh                     
  symetricother   theand 

                                   a  /a  - d/2   tanh                     

d1d1

d11
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The symmetrical part corresponds to the long range plas-
mons. The Brent method has been used to solve the equa-
tion and the results are illustrated in Fig. 4. 
 

 
 

Fig. 4. Dispersion relationship for a three layer system 
d=60nm 

 
 

For a thickness of roughly 60 nm the two curve parts 
are superposed, and suites the results of Fig.3 

This method allows obtaining a propagation length of 
140 µm order for a wave length of 770 nm and a thickness 
of 33 nm for the case of gold layers. 

 
 
5. Results and discussions 
 
The first part of this work focused on certain impor-

tant parameter computation, such as the reflection coeffi-
cient. Figs. 5-7 show a comparison of the theoretical and 
experimental results in case of a symmetrical structure. It 
can be noticed that the plasmons range is greater than 100 
µm. This corresponds to propagation length of surface 
plasmons-polariton given by: LPS =1/[2( Γi +Γrad )] 
=1.09µm. 

As can be seen the experimental values are far from 
that predicted by theory, i.e., 140µm. This can be ex-
plained by the important radiative losses due to small layer 
thickness of PMMA that does not allow obtaining a plas-
mon polariton propagating over a long distance. However, 
this experiment allowed to characterize precisely the ex-
perimental parameters such as εm, d1 the PMMA lateral 
thickness. Hence, the new parameters leading to the exci-
tation of long range mode are: λ= 770nm, d1 =2.6µm d3 
=33nm. The reflection coefficient computed from these 
values is LPS=1/2 Γi ≈180µm. 

 
 

Fig 5. Dispersion relationship w= f(k)  for a 3 layer sys-
tem, d=33nm 

 
 

 
 

Fig. 6. Experimental versus Theoretical Results 
 

 
 

Fig. 7. Rp vs. Incidence angle for the System 
λ = 770nm, d1 =2.6µm d3 =33nm 
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6. Conclusion 
 
The theoretical and experimental investigations on a 

symmetrical structure response under the plasmon-
polariton mode of long range lead to a more precise char-
acterization of the experimental parameters such as gold 
dielectric constant and the thickness of the PMMA, which 
are important in implementing the experiment. 

In this work we have defined new theoretical parame-
ters for exciting a long range mode, with parametric values 
λ= 770 nm, d1 =2.6 µm d=33 nm. For these parameters, 
we observed a propagation length of 180 µm. 

Numerical simulations of certain parameter evolution 
were conducted which led to the study of the length that 
can be traveled by a wave. The proposed system supports 
a plasmon propagating over more than 140 µm distance. 

Surface adherence problems did not allow validation 
of the last simulation results. Hence implementing a sam-
ple test PMMA structure of thickness 2.6 µm and that of 
gold of d=33 nm is one of the future possible venues of 
this investigation. 
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